Callington Haven Pty Ltd Chemwatch: **5147-39**Version No: **4.1.1.1** Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 4 Issue Date: 07/09/2018 Print Date: 17/10/2018 L GHS AUS EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # Product Identifier Product name DUBL-CHEK BO-1 Aerosol Synonyms Not Available Proper shipping name AEROSOLS Other means of identification Not Available # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack | |--------------------------|---| | | Use according to manufacturer's directions. | # Details of the supplier of the safety data sheet | Registered company name | Callington Haven Pty Ltd | |-------------------------|--| | Address | 30 South Street Rydalmere NSW 2116 Australia | | Telephone | +61 2 9898 2700 | | Fax | +61 2 9475 0449 | | Website | www.callingtonhaven.com | | Email | customerservice@callington.com | # **Emergency telephone number** | Association /
Organisation | Chemwatch | |-----------------------------------|--| | Emergency telephone numbers | 1800 039 008 (24 hours),+61 3 9573 3112 (24 hours) | | Other emergency telephone numbers | Not Available | # **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | +61 2 9186 1132 | Not Available | Once connected and if the message is not in your prefered language then please dial 01 # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | | | |-------------------------------|---|--|--| | Classification ^[1] | Aerosols Category 1, Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects) | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | ### Label elements Issue Date: **07/09/2018**Print Date: **17/10/2018** # Hazard pictogram(s) SIGNAL WORD DANGER # Hazard statement(s) | H222 | Extremely flammable aerosol. | | |--------|--|--| | H315 | Causes skin irritation. | | | H336 | May cause drowsiness or dizziness. | | | AUH044 | Risk of explosion if heated under confinement. | | | AUH066 | Repeated exposure may cause skin dryness and cracking. | | # Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | |------|--|--| | P211 | Oo not spray on an open flame or other ignition source. | | | P251 | Pressurized container: Do not pierce or burn, even after use. | | | P271 | Use only outdoors or in a well-ventilated area. | | | P261 | Avoid breathing mist/vapours/spray. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | # Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |-----------|--|--| | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | # Precautionary statement(s) Storage | | , · · · · · · · · · · · · · · · · · · · | | |--|--|--| | P405 | Store locked up. | | | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | | | P403+P233 Store in a well-ventilated place. Keep container tightly closed. | | | # Precautionary statement(s) Disposal | P501 | Dispose of contents/container in accordance with local regulations. | |------|---| # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # Substances See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | |-------------|-----------|---| | 64742-47-8 | 68 | distillates, petroleum, light, hydrotreated | | 68476-85-7. | 30 | hydrocarbon propellant | | | 1 | magnetic particles | # **SECTION 4 FIRST AID MEASURES** # **Description of first aid measures** If aerosols come in contact with the eyes: #### **Eye Contact** Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Chemwatch: **5147-39**Version No: **4.1.1.1** #### Page 3 of 14 **DUBL-CHEK BO-1 Aerosol** Issue Date: **07/09/2018**Print Date: **17/10/2018** | | ► Transport to hospital or doctor without delay. ► Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | |--------------|---|--|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating firs procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | | | Ingestion | For advice, contact a Poisons Information Centre or a doctor. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | | | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to petroleum distillates or related hydrocarbons: - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] #### **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** SMALL FIRE: Water spray, dry chemical or CO2 LARGE FIRE: Water spray or fog. #### Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - $\,\blacktriangleright\,$ Prevent, by any means available, spillage from entering drains or water course. - ▶ If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - ▶ DO NOT
approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - ▶ If safe to do so, remove containers from path of fire. - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ # Fire/Explosion Hazard - Liquid and vapour are highly flammable.Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. - Vapour may travel a considerable distance to source of ignition. Chemwatch: 5147-39 Page 4 of 14 Issue Date: 07/09/2018 Version No: 4.1.1.1 Print Date: 17/10/2018 #### **DUBL-CHEK BO-1 Aerosol** ▶ Heating may cause expansion or decomposition with violent container rupture. · Aerosol cans may explode on exposure to naked flames. • Rupturing containers may rocket and scatter burning materials. ▶ Hazards may not be restricted to pressure effects. ▶ May emit acrid, poisonous or corrosive fumes. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. **HAZCHEM** Not Applicable ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. | |--------------|---| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** Safe handling # Precautions for safe handling - ▶ Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - ▶ Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - ► DO NOT incinerate or puncture aerosol cans. - ► DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. - · Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are # Page 5 of 14 **DUBL-CHEK BO-1 Aerosol** Issue Date: 07/09/2018 Print Date: 17/10/2018 # contents of can - ▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject - Store in original containers in approved flammable liquid storage area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - ▶ Keep containers securely sealed. Contents under pressure. - Store away from incompatible materials. - ▶ Store in a cool, dry, well ventilated area. - ▶ Avoid storage at temperatures higher than 40 deg C. - Store in an upright position. - ▶ Protect containers against physical damage. - Check regularly for spills and leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities # Suitable container - ► Aerosol dispenser. - ▶ Check that containers are clearly labelled. - Storage incompatibility Other information ▶ Avoid reaction with oxidising agents #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|---|-------------------------------|--------------------------|------------------|------------------|------------------| | Australia Exposure
Standards | distillates, petroleum, light, hydrotreated | Oil mist, refined mineral | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | Australia Exposure
Standards | hydrocarbon propellant | LPG (liquified petroleum gas) | 1000 ppm / 1800
mg/m3 | Not
Available | Not
Available | Not
Available | # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------------------|-----------------------------------|------------|--------------|--------------| | hydrocarbon propellant | Liquified petroleum gas; (L.P.G.) | 65,000 ppm | 2.30E+05 ppm | 4.00E+05 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | distillates, petroleum, light, hydrotreated | 2,500 mg/m3 | Not Available | | hydrocarbon propellant | 2,000 ppm | Not Available | #### MATERIAL DATA None assigned. Refer to individual constituents. ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. #### Appropriate engineering controls General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Speed: | |---|-----------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | Chemwatch: 5147-39 Page 6 of 14 Version No: 4.1.1.1 #### **DUBL-CHEK BO-1 Aerosol** Issue Date: **07/09/2018**Print Date: **17/10/2018** direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to
distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection - ▶ Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below #### Hands/feet protection - ► OTHERWISE: - For potentially moderate exposures: - ▶ Wear general protective gloves, eg. light weight rubber gloves. ▶ No special equipment needed when handling small quantities. - ▶ For potentially heavy exposures: - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. #### **Body protection** See Other protection below No special equipment needed when handling small quantities. #### OTHERWISE: - Overalls. - ▶ Skin cleansing cream. - ► Eyewash unit. # Other protection - ► Do not spray on hot surfaces. - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. - Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. # Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | AX-AUS | - | AX-PAPR-AUS / Class 1 | | up to 50 x ES | - | AX-AUS / Class 1 | - | | up to 100 x ES | - | AX-2 | AX-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Issue Date: **07/09/2018**Print Date: **17/10/2018** Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties Appearance Supplied as an aerosol pack. Contents under **PRESSURE**. Contains highly flammable hydrocarbon propellant. |Brown highly flammable liquid with petroleum odour; does not mix with water. | Physical state | Liquid | Relative density (Water = 1) | Not Available | |--|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit
(%) | 9.5 propellant | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit
(%) | 1.8 propellant | Volatile Component
(%vol) | >60 | | Vapour pressure (kPa) | UNDER PRESSURE | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects Inhaled Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination If exposure to highly concentrated solvent atmosphere is prolonged this may lead to narcosis, unconsciousness, even Chemwatch: **5147-39**Version No: **4.1.1.1** Page 8 of 14 DUBL-CHEK BO-1 Aerosol Issue Date: **07/09/2018**Print Date: **17/10/2018** | | coma and possible death. WARNING:Intentional misuse by concentrating/inhalin | g contents may be lethal. | | |--|---|--|--| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Ingestion may result in nausea, abdominal irritation, pain and vomiting | | | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing skin condition Open cuts, abraded or irritated skin should not be exposed to this material | | | | Еуе | number of individuals and/or is expected to produce
si
after instillation into the eye(s) of experimental animal | ests, that the material may cause eye irritation in a substantial gnificant ocular lesions which are present twenty-four hours or more s. Repeated or prolonged eye contact may cause inflammation urn) of the conjunctiva (conjunctivitis); temporary impairment of ay occur. | | | Chronic | Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS] | | | | DUBL-CHEK BO-1
Aerosol | TOXICITY Not Available | IRRITATION Not Available | | | distillates, petroleum,
light, hydrotreated | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[2] Oral (rat) LD50: >5000 mg/kg ^[2] | IRRITATION Not Available | | | hydrocarbon propellant | TOXICITY Inhalation (rat) LC50: 90.171125 mg/l15 min ^[1] | IRRITATION Not Available | | | Legend: | Value obtained from Europe ECHA Registered Subsi Unless otherwise specified data extracted from RTEC: | tances - Acute toxicity 2.* Value obtained from manufacturer's SDS.
S - Register of Toxic Effect of chemical Substances | | For "kerosenes" Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation. An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved. #### DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits. The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related: - increased relative heart weights for the mid- and high- dose males and females, - increased absolute and relative spleen weights in treated females, and - differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress- Chemwatch: 5147-39 Version No: 4.1.1.1 # Page 9 of 14 DUBL-CHEK BO-1 Aerosol Issue Date: 07/09/2018 Print Date: 17/10/2018 related and therefore, indirectly related to treatment). Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes. In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Opthalomological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights. Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin. A hydrodesulfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study, Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m3 kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues. Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. .Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation . If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred . Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration . The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity. *In-Vitro* (Genotoxicity): The potential *in vitro* genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation. The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results. Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation) *In-Vivo* Genotoxicity: Multiple *in vivo* genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in *in vivo* bone marrow cytogenetic tests in Sprague-Dawley rats. One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation. Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days premating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day. Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported.
There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds. ## for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is: HYDROCARBON PROPELLANT Chemwatch: 5147-39 Page 10 of 14 Version No: 4.1.1.1 #### **DUBL-CHEK BO-1 Aerosol** Issue Date: **07/09/2018**Print Date: **17/10/2018** C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). **Repeat dose toxicity:** With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is: Benzene (LOAEL .>=10 ppm) >C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). #### Genotoxicity *In vitro*: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems. *In vivo*: The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in in vivo test systems **Developmental toxicity:** Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen) DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED & HYDROCARBON PROPELLANT No significant acute toxicological data identified in literature search. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|-----------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: 🗶 – Data available but does not fill the criteria for classification ✓ – Data available to make classification Data Not Available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | DUBL-CHEK BO-1
Aerosol | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|---------------------------------|---|---------------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | distillates, petroleum,
light, hydrotreated | LC50 | 96 | Fish | 2.2mg/L | 4 | | ngnt, nydrotreated | NOEC | 3072 | Fish | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | ydrocarbon propellant | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Toxicity 3. EP | PIWIN Suite V3.12 (QSAR) - Aqua | pe ECHA Registered Substances - Eco
tic Toxicity Data (Estimated) 4. US EPA
Data 6. NITE (Japan) - Bioconcentration | A, Ecotox database - Aqua | • | Issue Date: **07/09/2018**Print Date: **17/10/2018** for acetone: log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2 BCF: 0.69 #### **Environmental fate:** Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source. Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life. Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades. Acetone does not concentrate in the food chain. Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period Drinking Water Standard: none available. Soil Guidelines: none available. Air Quality Standards: none available. #### **Ecotoxicity:** Testing shows that acetone exhibits a low order of toxicity Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l Aquatic invertebrate 2100 - 16700 mg/l Aquatic plant NOEC: 5400-7500 mg/l Daphnia magna chronic NOEC 1660 mg/l Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained
with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---|-----------------| | distillates, petroleum, light, hydrotreated | LOW (BCF = 159) | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods # Product / Packaging disposal - ► Consult State Land Waste Management Authority for disposal. - ► Discharge contents of damaged aerosol cans at an approved site. - ► Allow small quantities to evaporate. - ► DO NOT incinerate or puncture aerosol cans. - Bury residues and emptied aerosol cans at an approved site. Issue Date: **07/09/2018**Print Date: **17/10/2018** # **SECTION 14 TRANSPORT INFORMATION** # **Labels Required** Marine Pollutant NO HAZCHEM Not Applicable # Land transport (ADG) | UN number | 1950 | | |------------------------------|--|--| | UN proper shipping name | AEROSOLS | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | Packing group | Not Applicable | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 63 190 277 327 344 381 Limited quantity 1000ml | | # Air transport (ICAO-IATA / DGR) | UN number | 1950 | | | | |---------------------------------|--|---------------------------------------|----------------|--| | UN proper shipping name | Aerosols, flammable | | | | | | ICAO/IATA Class | 2.1 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Subrisk Not Applicable | | | | 5,005(05) | ERG Code 10L | | | | | Packing group | Not Applicable | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for
user | Special provisions | | A145 A167 A802 | | | | Cargo Only Packing Ir | nstructions | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | | Passenger and Cargo Packing Instructions | | 203 | | | | Passenger and Cargo Maximum Qty / Pack | | 75 kg | | | | Passenger and Cargo | Limited Quantity Packing Instructions | Y203 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | | 1000 | | |------------------------------|---|--| | UN number | 1950 | | | UN proper shipping name | AEROSOLS | | | Transport hazard class(es) | IMDG Class 2.1 IMDG Subrisk Not Applicable | | | Packing group | Not Applicable | | | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 | | Issue Date: 07/09/2018 Print Date: 17/10/2018 **Limited Quantities** 1000ml #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture # DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED(64742-47-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | Australia Standard for the Uniform Scheduling of Medicines and Poisons | |--|--| | Australia Hazardous Chemical Information System (HCIS) - Hazardous | (SUSMP) - Appendix E (Part 2) | | Chemicals | Australia Standard for the Uniform Scheduling of Medicines and Poisons | | Australia Inventory of Chemical Substances (AICS) | (SUSMP) - Schedule 5 | | | International Agency for Research on Cancer (IARC) - Agents Classified | | | by the IARC Monographs | #### HYDROCARBON PROPELLANT(68476-85-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 # **National Inventory Status** | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (hydrocarbon propellant; distillates, petroleum, light, hydrotreated) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Υ | | Japan - ENCS | N (hydrocarbon propellant) | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 07/09/2018 | |---------------|------------| | Initial Date | 24/07/2014 | #### Other information ### Ingredients with multiple cas numbers | Name | CAS No | |------------------------|--------------------------| | hydrocarbon propellant | 68476-85-7., 68476-86-8. | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit Chemwatch: 5147-39 Page 14 of 14 Issue Date: 07/09/2018 Version No: 4.1.1.1 Print Date: 17/10/2018 #### **DUBL-CHEK BO-1 Aerosol** IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.