Fluorescent Penetrant HM-604 # **Callington Haven Pty Ltd** Chemwatch: **25-9307**Version No: **3.1.1.1** Safety Data Sheet according to WHS and ADG requirements ### Chemwatch Hazard Alert Code: 2 Issue Date: **05/09/2018**Print Date: **16/10/2018**L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Fluorescent Penetrant HM-604 | | | |-------------------------------|------------------------------|--|--| | Synonyms | Not Available | | | | Other means of identification | Not Available | | | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Penetrant for flaw detection in metals. ## Details of the supplier of the safety data sheet | Registered company name | Callington Haven Pty Ltd | | |-------------------------|---|--| | Address | 0 South Street Rydalmere NSW 2116 Australia | | | Telephone | +61 2 9898 2700 | | | Fax | +61 2 9475 0449 | | | Website | www.callingtonhaven.com | | | Email | customerservice@callington.com | | ## **Emergency telephone number** | gyy | | | |-----------------------------------|--|--| | Association / Organisation | Chemwatch | | | Emergency telephone numbers | 1800 039 008 (24 hours),+61 3 9573 3112 (24 hours) | | | Other emergency telephone numbers | Not Available | | ### **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | | |----------------|----------------------|----------------------|--| | 1800 039 008 | +61 2 9186 1132 | Not Available | | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture | Poisons Schedule | sisons Schedule Not Applicable | | | |---|---|--|--| | Classification [1] Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A | | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | ## Label elements Issue Date: **05/09/2018** Print Date: **16/10/2018** ## Hazard pictogram(s) SIGNAL WORD WARNING ## Hazard statement(s) | H315 | Causes skin irritation. | |------|--------------------------------| | H319 | Causes serious eye irritation. | ## Precautionary statement(s) Prevention P280 Wear protective gloves/protective clothing/eye protection/face protection. ## Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | | | |----------------|--|--|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. IF ON SKIN: Wash with plenty of soap and water. If skin irritation occurs: Get medical advice/attention. | | | | | P302+P352 | | | | | | P332+P313 | | | | | ## Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal Not Applicable ### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS ### **Substances** See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |------------|-----------|---------------------------------------| | 84133-50-6 | NotSpec. | alcohols C12-14 secondary ethoxylated | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Description of first aid measures | | | | | | |-----------------------------------|---|--|--|--|--| | Eye Contact | f this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | | | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | | | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | | | | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. | | | | | Chemwatch: 25-9307 Page 3 of 11 ### Fluorescent Penetrant HM-604 Issue Date: 05/09/2018 Version No: 3.1.1.1 Print Date: 16/10/2018 - ▶ Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - ▶ Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - ► Seek medical advice. ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 FIREFIGHTING MEASURES** ### **Extinguishing media** - ▶ Foam. - ► Dry chemical powder. - BCF (where regulations permit). - · Carbon dioxide. - Water spray or fog Large fires only. ## Special hazards arising from the substrate or mixture | opeoid: nazarao arioing | al liazards arising from the substrate of mixture | | | | | |-------------------------|---|--|--|--|--| | Fire Incompatibility | Avoid contamination with strong oxidising agents as ignition may result | | | | | | Advice for firefighters | | | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | | | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Other combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. | | | | | | HAZCHEM | Not Applicable | | | | | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Minor Spills | Slippery when spilt. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|--| | Major Spills | Slippery when spilt. Remove all ignition sources. Minor hazard. • Clear area of personnel. • Alert Fire Brigade and tell them location and nature of hazard. • Control personal contact with the substance, by using protective equipment as required. • Prevent spillage from entering drains or water ways. • Contain spill with sand, earth or vermiculite. | Chemwatch: 25-9307 Page 4 of 11 Issue Date: 05/09/2018 #### Fluorescent Penetrant HM-604 Version No: 3.1.1.1 Print Date: 16/10/2018 - ► Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. - Wash area and prevent runoff into drains or waterways. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** Safe handling ### Precautions for safe handling - Avoid smoking, naked lights or ignition sources. - ▶ Limit all unnecessary personal contact. - ▶ Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - ▶ Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. # Other information - ▶ Store in original containers. - ▶ Keep containers securely sealed. - ▶ No smoking, naked lights or ignition sources. - ▶ Store in a cool, dry, well-ventilated area. - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities ### Suitable container - ▶ Metal can or drum - ▶ Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. ## Storage incompatibility Avoid storage with oxidisers ## SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION # **Control parameters** ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ## INGREDIENT DATA Not Available ## **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------------------|---------------|---------------|---------------|---------------| | Fluorescent Penetrant
HM-604 | Not Available | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---------------------------------------|---------------|---------------| | alcohols C12-14 secondary ethoxylated | Not Available | Not Available | ## MATERIAL DATA None assigned. Refer to individual constituents. ## **Exposure controls** | Appropriate engineering | |-------------------------| | controls | General exhaust is adequate under normal operating conditions. Page 5 of 11 Issue Date: 05/09/2018 Version No: 3.1.1.1 Print Date: 16/10/2018 Fluorescent Penetrant HM-604 ## Personal protection · Safety glasses with side shields; or as required, Chemical goggles. ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury Eye and face protection experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] See Hand protection below Skin protection ▶ Wear chemical protective gloves, e.g. PVC. Hands/feet protection ▶ Wear safety footwear or safety gumboots, e.g. Rubber See Other protection below **Body protection** Overalls. Other protection ► Eyewash unit. ### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class1 P2 | - | | up to 50 | 1000 | - | A-AUS / Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 P2 | | up to 100 | 10000 | - | A-3 P2 | | 100+ | | | Airline** | ^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | Yellow-green liquid with petroleum odour; dispersible in water. | | | |--|---|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | ~0.97 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 227 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 171 (ASTM D93) | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | Chemwatch: 25-9307 Page 6 of 11 Version No: 3.1.1.1 ### Fluorescent Penetrant HM-604 | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | |---------------------------|---------------|----------------------------------|---------------| | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** ## Information on toxicological effects | Inhaled | Not normally a hazard due to non-volatile nature of produ | uct | |---------------------------------------|---|--| | Ingestion | Accidental ingestion of the material may be damaging to
Ingestion may result in nausea, abdominal irritation, pain | | | Skin Contact | healthy intact skin of animals, for up to four hours, such end of the exposure period. Skin irritation may also be proor form of contact dermatitis (nonallergic). The dermatitis is (oedema) which may progress to blistering (vesiculation) | , and/or produces significant inflammation when applied to the inflammation being present twenty-four hours or more after the resent after prolonged or repeated exposure; this may result in a soften characterised by skin redness (erythema) and swelling and thickening of the epidermis. At the microscopic level of the skin (spongiosis) and intracellular oedema of the epidermis. | | Еуе | individuals and/or may produce significant ocular lesions
the eye(s) of experimental animals.
Repeated or prolonged eye contact may cause inflamma | e material may cause eye irritation in a substantial number of which are present twenty-four hours or more after instillation into tion characterised by temporary redness (similar to windburn) of vision and/or other transient eye damage/ulceration may occur. | | Chronic | | duce chronic effects adverse to health (as classified by EC by all routes should be minimised as a matter of course. | | | | | | Fluorescent Penetrant | TOXICITY | IRRITATION | | HM-604 | Not Available | Not Available | | | тохісіту | IRRITATION | | alcohols C12-14 secondary ethoxylated | dermal (rat) LD50: >2000 mg/kg ^[1] | Not Available | | Secondary emoxylated | Oral (rat) LD50: >=2000 mg/kg ^[1] | | | Legend: | Value obtained from Europe ECHA Registered Substan Unless otherwise specified data extracted from RTECS - | nces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Register of Toxic Effect of chemical Substances | **ALCOHOLS C12-14 SECONDARY ETHOXYLATED** No significant acute toxicological data identified in literature search. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol $(pentaethylene\ glycol\ mono-n-dodecyl\ ether)\ ethoxylate,\ showed\ that\ polyethers\ form\ complex\ mixtures\ of\ oxidation$ products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of Issue Date: 05/09/2018 Print Date: 16/10/2018 Chemwatch: 25-9307 Page 7 of 11 Issue Date: 05/09/2018 Version No: 3.1.1.1 #### Fluorescent Penetrant HM-604 Print Date: 16/10/2018 the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture . On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al: Chem. Res. Toxicol.2008.21.53-69 Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean http://doi.org/10.5487/TR.2015.31.2.105 Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity. Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eves of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficultto diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41 EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000) Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) . AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity. The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic Chemwatch: 25-9307 Page 8 of 11 Issue Date: 05/09/2018 Version No: 3.1.1.1 Print Date: 16/10/2018 #### Fluorescent Penetrant HM-604 interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations. AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust. In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers): Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr . Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight. Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid . Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers. The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death. Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation. Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation . Due to a high incidence of similar spontaneous changes in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or unremarkable. haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological Chemwatch: **25-9307** Page **9** of **11** Issue Date: **05/09/2018**Version No: **3.1.1.1** Print Date: **16/10/2018** #### Fluorescent Penetrant HM-604 effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity **Mutagenicity:** Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity. Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day). **Developmental toxicity**: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|-----------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: - X Data available but does not fill the criteria for classification - ✓ Data available to make classification - O Data Not Available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** ### **Toxicity** | Electrical Department | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|---|--|------------------|------------------| | Fluorescent Penetrant
HM-604 | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | alaahala C42 44 | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | alcohols C12-14
secondary ethoxylated | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Toxicity 3. EP | m 1. IUCLID Toxicity Data 2. Europe ECHA
IWIN Suite V3.12 (QSAR) - Aquatic Toxici
TOC Aquatic Hazard Assessment Data 6. N | ity Data (Estimated) 4. US EPA, Ecotox d | atabase - Aqua | | DO NOT discharge into sewer or waterways. Bioconcentration Data 8. Vendor Data ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | ### Mobility in soil | Ingredient Mobility | |---------------------| |---------------------| Chemwatch: 25-9307 Page 10 of 11 Version No: 3.1.1.1 Fluorescent Penetrant HM-604 Issue Date: 05/09/2018 Print Date: 16/10/2018 No Data available for all ingredients ### **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods ### Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. ### **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture ALCOHOLS C12-14 SECONDARY ETHOXYLATED(84133-50-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) ## **National Inventory Status** | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Y | | Canada - DSL | Υ | | Canada - NDSL | N (alcohols C12-14 secondary ethoxylated) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | N (alcohols C12-14 secondary ethoxylated) | | Japan - ENCS | N (alcohols C12-14 secondary ethoxylated) | | Korea - KECI | Y | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ## **SECTION 16 OTHER INFORMATION** | Revision Date | 05/09/2018 | |---------------|------------| | Initial Date | 03/03/2011 | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. Chemwatch: 25-9307 Page 11 of 11 Issue Date: 05/09/2018 Version No: 3.1.1.1 Print Date: 16/10/2018 #### Fluorescent Penetrant HM-604 The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.