Fluorescent Penetrant RC-77 **Callington Haven Pty Ltd** Chemwatch: **25-9309** Version No: 2.1.1.1 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **27/06/2017**Print Date: **16/11/2017**L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Fluorescent Penetrant RC-77 | |-------------------------------|-----------------------------| | Synonyms | Not Available | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Penetrant for flaw detection in metals. ## Details of the supplier of the safety data sheet | Registered company name | Callington Haven Pty Ltd | Callington Haven | | |-------------------------|--|---|--| | Address | 30 South Street Rydalmere NSW 2116 Australia | PO Box 144 Rydalmere NSW 2116 Australia | | | Telephone | +61 2 9898 2700 | Not Available | | | Fax | +61 2 9475 0449 | Not Available | | | Website | www.callingtonhaven.com | Not Available | | | Email | customerservice@callington.com | Not Available | | ## Emergency telephone number | Association / Organisation | Not Available | Not Available | |-----------------------------------|--|---------------| | Emergency telephone numbers | 1800 039 008 (24 hours),+61 3 9573 3112 (24 hours) | Not Available | | Other emergency telephone numbers | Not Available | Not Available | ## **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 0 | | 3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | S5 | |--------------------|---| | Classification [1] | Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | ## Label elements Hazard pictogram(s) SIGNAL WORD WARNING Hazard statement(s) H315 Causes skin irritation. Chemwatch: **25-9309** Page **2** of **10** Issue Date: **27/06/2017** Version No: 2.1.1.1 Fluorescent Penetrant RC-77 Print Date: 16/11/2017 H319 Causes serious eye irritation. ## Precautionary statement(s) Prevention P280 Wear protective gloves/protective clothing/eye protection/face protection. #### Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |-------------|-----------|--| | 29761-21-5 | NotSpec. | isodecyl diphenyl phosphate | | 68515-45-7 | NotSpec. | dinonyl phthalate, branched and linear | | 64742-46-7. | NotSpec. | distillates, petroleum, middle, hydrotreated | | 8042-47-5 | NotSpec. | white mineral oil (petroleum) | ## **SECTION 4 FIRST AID MEASURES** ## Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. | ## Indication of any immediate medical attention and special treatment needed Seek medical advice. Treat symptomatically. - Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product. - ▶ In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases - ▶ High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. **NOTE:** Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. ## **SECTION 5 FIREFIGHTING MEASURES** ## Extinguishing media - ► Foam. - ▶ Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. Chemwatch: 25-9309 Page 3 of 10 Issue Date: 27/06/2017 Version No: 2.1.1.1 Print Date: 16/11/2017 ## Fluorescent Penetrant RC-77 ## Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with strong oxidising agents as ignition may result | |-------------------------|---| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Other combustion products include: amp:43cv | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** HAZCHEM ## Personal precautions, protective equipment and emergency procedures Not Applicable See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Minor Spills | Slippery when spilt. Remove all ignition sources. Clean up
all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | |--------------|--| | Major Spills | Slippery when spilt. Remove all ignition sources. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 HANDLING AND STORAGE** | Precautions for safe handling | 9 | |-------------------------------|---| | Safe handling | Avoid smoking, naked lights or ignition sources. Limit all unnecessary personal contact. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | Chemwatch: **25-9309** Page **4** of **10** Version No: **2.1.1.1** ## Fluorescent Penetrant RC-77 Issue Date: **27/06/2017**Print Date: **16/11/2017** ## Conditions for safe storage, including any incompatibilities Suitable container - Metal can or drum - Packaging as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. Storage incompatibility Avoid storage with oxidisers #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|--|---------------------------|---------|---------------|---------------|---------------| | Australia Exposure Standards | distillates, petroleum, middle, hydrotreated | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure Standards | white mineral oil (petroleum) | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | #### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--|---------------|---------------|---------------|---------------| | Fluorescent Penetrant RC-77 | Not Available | Not Available | Not Available | Not Available | | | | | | | | Ingredient | Original IDLH | | Revised IDLH | | | isodecyl diphenyl phosphate | Not Available | | Not Available | | | dinonyl phthalate, branched and linear | Not Available | | Not Available | | | distillates, petroleum, middle, hydrotreated | 2,500 mg/m3 | | Not Available | | | white mineral oil (petroleum) | 2,500 mg/m3 | | Not Available | | #### MATERIAL DATA None assigned. Refer to individual constituents. NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE N: The classification as a carcinogen need not apply if the full refining history is known and it can be shown that the substance from which it is produced is not a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s (50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|------------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after Version No: 2.1.1.1 #### Fluorescent Penetrant RC-77 Issue Date:
27/06/2017Print Date: **16/11/2017** reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Personal protection Safety glasses with side shields; or as required, Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the Eye and face protection class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. Hands/feet protection ▶ Wear safety footwear or safety gumboots, e.g. Rubber See Other protection below **Body protection** Overalls. Other protection ► Eyewash unit. Thermal hazards Not Available #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | ^{^ -} Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Yellow-green liquid with petroleum odour; dispersible in water. | | | |--|---|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 0.90 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 227 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 93.3 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | Chemwatch: 25-9309 Page 6 of 10 Issue Date: 27/06/2017 Version No: 2.1.1.1 Print Date: 16/11/2017 #### Fluorescent Penetrant RC-77 | Possibility of hazardous reactions | See section 7 | |------------------------------------|---------------| | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicolog | jical | effects | |--------------------------|-------|---------| |--------------------------|-------|---------| | formation on toxicological | effects | | | | |---------------------------------|---|--|--|--| | Inhaled | Not normally a hazard due to non-volatile nature of product
Inhalation of oil droplets/ aerosols may cause discomfort and | may produce chemical pneumonitis. | | | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Ingestion may result in nausea, abdominal irritation, pain and vomiting | | | | | Skin Contact | direct contact, and/or produces significant inflammation when
present twenty-four hours or more after the end of the exposu
result in a form of contact dermatitis (nonallergic). The derma | terial either produces inflammation of the skin in a substantial number of individuals following
a applied to the healthy intact skin of animals, for up to four hours, such inflammation being
ure period. Skin irritation may also be present after prolonged or repeated exposure; this may
atitis is often characterised by skin redness (erythema) and swelling (oedema) which may
if the epidermis. At the microscopic level there may be intercellular oedema of the spongy
epidermis. | | | | Еуе | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | | Chronic | mineral oils carries with it the risk of skin conditions such as a sole of the foot (plantar warts). With highly refined mineral oi Exposure to oil mists frequently elicits respiratory conditions, may produce lipoid pneumonia although clinical evidence is e months, the activity of lung and serum alkaline phosphatase e | res include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the lis no appreciable systemic effects appear to result through skin absorption. s, such as asthma; the provoking agent is probably an additive. High oil mist concentrations equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes ed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of | | | | | | · · · · · · · · · · · · · · · · · · · | | | | Fluorescent Penetrant RC-77 | Not Available | IRRITATION Not Available | | | | | TOXICITY | IRRITATION | | | | | Dermal (rabbit) LD50: >7900 mg/kg ^[2] | Eyes (rabbit): slight * | | | | isodecyl diphenyl phosphate | Inhalation (rat) LC50: >46.3 mg/l/4h*[2] | Skin (rabbit): slight * | | | | | Oral (rat) LD50: >7940 mg/kg ^[1] | Citin (castif) sign | | | | | TOXICITY | IRRITATION | | | | dinonyl phthalate, branched | Dermal (rabbit) LD50: 25000 mg/kg ^[2] | Eye (rabbit): 500 mg/24h mild | | | | and linear | Oral (rat) LD50: 30000 mg/kg ^[2] | Skin (rabbit): 500 mg/24h mild | | | | | TOXICITY | IRRITATION | | | | distillates, petroleum, middle, | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Not
Available | | | | hydrotreated | Oral (rat) LD50: >5000 mg/kg ^[1] | | | | | | TOXICITY | IRRITATION | | | | white mineral oil (petroleum) | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Not Available | | | | , | Oral (rat) LD50: >5000 mg/kg ^[1] | 1
1
1
1 | | | | Legend: | Value obtained from Europe ECHA Registered Substance | es - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified | | | data extracted from RTECS - Register of Toxic Effect of chemical Substances ### DINONYL PHTHALATE, BRANCHED AND LINEAR High Molecular Weight Phthalate Esters (HMWPEs) Category as defined by the Phthalate Esters Panel HPV Testing Group (2001) and OECD (2004). The HMWPE group includes chemically similar substances produced from alcohols having backbone carbon lengths of >= 7. Due to their similar chemical structure, category members are generally similar with respect to physicochemical, biological and toxicological properties or display an expected trend. Thus, read-across for toxicity endpoints is an appropriate approach to characterise selected endpoints for members of this category. In some cases the substances have ester side group constituents that span two subcategories (i.e., transitional and high molecular weight constituents). If the level of C4 to C6 constituents in the substance exceeded 10%, the substance was conservatively placed in the transitional subcategory. High molecular weight phthalates are used nearly exclusively as plasticisers of PVC. They are very poorly soluble in water, and have very low vapor pressure. The extant database demonstrates that these substances have few biological effects. A notable exception to this generalisation is that hepatocarcinogenicity has been observed for diisononyl phthalate (DINP). The hepatocarcinogencity effects of DINP are by a mechanism (peroxisomal proliferation) to which rodents are particularly sensitive. However, it does not appear to be relevant to humans. Chemwatch: 25-9309 Page **7** of **10** Issue Date: 27/06/2017 Version No: 2.1.1.1 #### Fluorescent Penetrant RC-77 Print Date: 16/11/2017 The high molecular weight ohthalates all demonstrate minimal acute toxicity, are not genotoxic, exhibit some liver and kidney effects at high doses, and are negative for reproductive and developmental effects. Further, the available data indicate that the toxicological activity of these molecules diminishes with increasing molecular weight. Studies on HMWPEs indicate that they are rapidly metabolised in the gastrointestinal tract to the corresponding monoester, absorbed and excreted primarily in the urine. Acute toxicity: The available data on phthalates spanning the carbon range from C8-C13 indicate that phthalate esters in the high molecular weight subcategory are not toxic by acute oral and dermal administration; LD50 values of all substances tested exceed the maximum amounts which can be administered to the animals. There are fewer data available on inhalation toxicity; only di-iso-nonyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) have been tested. However, the phthalates in the high molecular weight subcategory have extremely low vapor pressures, and exposure by inhalation at potentially hazardous levels is not anticipated. Repeat dose toxicity. Several substances ranging from C8-C11 have been tested for repeated dose toxicity in studies ranging from 21 days to two years. Ditridecyl phthalate (CAS 119-06-2) has been studied by the Japan Ministry of Health and Welfare (unpublished report) and data for this substance is used as read-across data for DTDP*. In addition results from repeat dose studies examining DINP (CAS 685 15-48-0) and DIDP (CAS 68515-49-1) are used as read across for the di C9-C11 phthalates (CAS 68515-43-5). The principal effects found are those associated with peroxisomal proliferation, including liver enlargement and induction of peroxisomal enzymes. As shown for example in a comparative study of liver effects, the strongest inducers of peroxisomal proliferation were DEHP, DINP, and DIDP with substances of shorter and longer ester side chains (e.g., 610P*, 711P*, and diundecyl phthalate - DUP) showing less pronounced effects. Thus, it is reasonable to conclude that other members of this subcategory would show effects similar to but not more pronounced than those associated with DINP and DIDP. It should also be noted that the relevance of these findings to human health is, at best, questionable. It has been shown that these effects are mediated through the peroxisome proliferation-activated receptor alpha (PPARa;), and that levels of PPARa are much higher in rodents than humans. Thus, one would expect humans to be substantially less responsive than rodents to peroxisome proliferating agents. Empirical evidence supporting this postulation is provided by studies in primates in which repeated administration of DEHP and DINP had no effects on liver, kidney or testicular parameters. In this regard it should also be noted that kidney enlargement is also commonly observed but normally without any pathological changes. There is a component of the kidney changes which is also PPARa-related. It has also been shown that in male rats, DINP induces an alpha 2u-globulin nephropathy which is male rat-specific but without relevance to humans. Thus, as was true for the liver changes, the relevance of the kidney changes to human health is Finally, some of the lower molecular weight phthalates can induce testicular atrophy when administered to juvenile rats at high levels. However, the higher molecular weight phthalates including di-n-octyl phthalate (DnOP), DINP, DIDP, 610P, and 71 1P do not induce testicular atrophy. Further, the testis was not a target organ for DINP in either marmosets or cynomolgus monkeys. Thus, testicular atrophy is not an effect associated with phthalates in the high molecular weight subcategory Reproductive toxicity: Reproductive toxicity tests in rats have been carried out with DINP, DIDP a linear C7-C9 phthalate (CAS 68515-41-3), a linear C9-C11 phthalate, and ditridecyl phthalate (Japan Ministry of Health and Welfare, unpublished report). None of these affected fertility or profoundly affected male reproductive development. A slight decrease in offspring viability was reported for both DIDP and ditridecyl phthalate at levels associated with maternal effects. DnOP was tested for effects on fertility in a continuous breeding protocol in mice, and, like the other members of this subcategory, did not reduce fertility. Thus, it can be concluded that the subcategory of high molecular weight phthalates do not affect fertility. Developmental toxicity: Developmental toxicity tests in rats have been carried out with DINP; DIDP; C7-9 phthalate (CAS 68515-41-3); C9-11 phthalate (CAS 68515-43-5); and ditridecyl phthalate (CAS 119-06-2). None of the substances tested affected litter size, foetal survival or bodyweight, and none produced teratogenic effects. Increased frequencies of developmental variants including dilated renal pelvis, and supernumerary lumbar and cervical ribs were found at levels associated with maternal effects. The toxicological significance of these developmental variants is unclear. DnOP was not teratogenic in mice when tested at very high levels. Thus, it can be concluded that this subcategory of high molecular weight phthalates do not produce profound developmental effects in rodents Genotoxicity: The majority of the substances in the subcategory of high molecular weight phthalates have been tested for genetic activity in the Salmonella assay, and all were inactive. One large program covering many of these substances was carried out by the National Institute of Environmental Health Sciences. Similarly, a range of substances covering the majority of the carbon numbers in this subcategory were found to be inactive in mouse Chromosomal Aberrations. Two representative members of the subcategory of high molecular weight phthalates (DINP and DIDP) have been tested for chromosomal mutation in the mouse micronucleus test, and both were inactive. Ditridecyl phthalate (CAS 119-06-2) induced neither structural chromosomal aberrations nor polyploidy in CHL cells up to the limit concentration of 4.75 mg/ ml, in the absence or presence of an exogenous metabolic activation system (Japan Ministry of Health and Welfare, unpublished report). Further, all of the low molecular weight and transitional phthalates that have been tested were inactive. *610P - mixed decyl, hexyl and octyl esters (CAS Rn: 68648-93-1) *711P - C7,C11, branched and linear esters (CAS Rn: 111381-90-9) * DTDP - di-C11-14, C13 rich ester (CAS 68515-47-9) The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. for di-sec-octyl phthalate Gastrointestinal changes, respiratory
system changes, somnolence, haemorrhage, necrotic changes in GI tract, lowered blood pressure, liver, endocrine tumours, foetotoxicity, paternal effects, maternal effects, specific developmental abnormalities (hepatobiliary system, musculoskeletal system, cardiovascular system, urogenital system, central nervous system, eye/ear), foetolethality recorded. ### DISTILLATES, PETROLEUM, MIDDLE, HYDROTREATED typical for isoparaffinic hydrocarbons: isoparaffinic hydrocarbon: #### WHITE MINERAL OIL (PETROLEUM) The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Oral (rat) TCLo: 92000 mg/kg/92D-Cont. Generally the toxicity and irritation is of low order. White oils and highly/solvent refined oils have not shown the long term risk of skin cancer that follows persistent skin contamination with some other mineral oils, due in all probability to refining that produces low content of both polyaromatics (PAH) and benz-alpha-pyrenes (BaP) The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: The adverse effects of these materials are associated with undesirable components, and - The levels of the undesirable components are inversely related to the degree of processing; - Distillate base oils receiving the same degree or extent of processing will have similar toxicities; - The potential toxicity of residual base oils is independent of the degree of processing the oil receives. - The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing. Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and DISTILLATES, PETROLEUM. MIDDLE, HYDROTREATED & WHITE MINERAL OIL (PETROLEUM) Chemwatch: 25-9309 Page 8 of 10 Issue Date: 27/06/2017 Version No: 2.1.1.1 #### Fluorescent Penetrant RC-77 Print Date: 16/11/2017 carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing Highly and Severely Refined Distillate Base Oils Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l. When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil's toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study. - The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive. - ▶ The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and - The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat. #### Genotoxicity: In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay. Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices. In vivo (chromosomal aberrations). A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells. Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification Data available to make classification O - Data Not Available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** DISTILLATES, PETROLEUM, MIDDLE, HYDROTREATED & WHITE MINERAL OIL (PETROLEUM) ## **Toxicity** | Fluorescent Penetrant RC-77 | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 1400mg/L | 4 | | isodecyl diphenyl phosphate | EC50 | 48 | Crustacea | >0.03mg/L | 1 | | | EC50 | 72 | Algae or other aquatic plants | >0.03mg/L | 1 | | | NOEC | 504 | Crustacea | =0.0038mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | dinonyl phthalate, branched and linear | NOEC | 504 | Crustacea | 0.094mg/L | 5 | | and inical | NOEC | 504 | Crustacea | 0.1mg/L | 5 | | distillates, petroleum, middle, | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | hydrotreated | NOEC | 48 | Crustacea | =10mg/L | 1 | | white mineral oil (petroleum) | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Leaend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Chemwatch: **25-9309** Page **9** of **10** Version No: 2.1.1.1 Fluorescent Penetrant RC-77 Issue Date: **27/06/2017** Print Date: **16/11/2017** ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------------|-------------------------|------------------| | isodecyl diphenyl phosphate | HIGH | HIGH | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |-----------------------------|-----------------| | isodecyl diphenyl phosphate | LOW (BCF = 335) | #### Mobility in soil | Ingredient | Mobility | |-----------------------------|--------------------| | isodecyl diphenyl phosphate | LOW (KOC = 752600) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. ## **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | Marine Pollutant | NO |
------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture ISODECYL DIPHENYL PHOSPHATE(29761-21-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) DINONYL PHTHALATE, BRANCHED AND LINEAR(68515-45-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) DISTILLATES, PETROLEUM, MIDDLE, HYDROTREATED(64742-46-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Mon #### WHITE MINERAL OIL (PETROLEUM)(8042-47-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs | National Inventory | Status | |-------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (isodecyl diphenyl phosphate; dinonyl phthalate, branched and linear; distillates, petroleum, middle, hydrotreated; white mineral oil (petroleum)) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | Υ | | Japan - ENCS | N (dinonyl phthalate, branched and linear; distillates, petroleum, middle, hydrotreated; white mineral oil (petroleum)) | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | N (dinonyl phthalate, branched and linear) | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | Chemwatch: 25-9309 Page 10 of 10 Issue Date: 27/06/2017 Version No: 2.1.1.1 Print Date: 16/11/2017 Fluorescent Penetrant RC-77 #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.